女的排卵期一般是什么时间| 什么降血压效果最好| 毛巾为什么会臭| 什么是g大调| 肾虚吃什么药好| 尿检蛋白质弱阳性是什么意思| 神经衰弱吃什么药| 每天吃一个西红柿有什么好处| 队友是什么意思| 男命七杀代表什么| 胸腺癌早期有什么症状| 早上喝蜂蜜水有什么好处| 按摩椅什么牌子最好| kitchen什么意思| 粘膜慢性炎是什么意思| k1什么意思| c反应蛋白是什么意思| 肖战是什么星座| 黄体不足吃什么| 咳嗽胸口疼是什么原因| 月经粉红色是什么原因| myp是什么意思| 宫腔积液和盆腔积液有什么区别| 英语一和英语二有什么区别| 佐助是什么意思| 青蒿素是什么| 字母圈是什么| 轻微手足口病吃什么药| 精神出轨什么意思| 桂圆不能和什么一起吃| rh(d)血型阳性是什么意思| 血小板偏低有什么危害| ns是什么单位| 滑膜炎吃什么好得快| co是什么| 常吃洋葱有什么好处| 为什么人| 预科班是什么意思| 男生一般什么时候停止长高| 凌晨一点多是什么时辰| 吧可以组什么词| 梦见鞋丢了是什么意思| 拔完智齿吃什么消炎药| 肚子疼吃什么食物好| 手掌横纹代表什么意思| 福祉是什么意思| 林子祥属什么生肖| 毛宁和毛阿敏是什么关系| 为什么前壁容易生男孩| 韩信点兵什么意思| 镇长什么级别| 为什么一吹空调就鼻塞| 真正的爱情是什么| 对牛弹琴代表什么生肖| 卧底大结局是什么| 吃大枣有什么好处| 拔牙后吃什么| 婧读什么| 外油内干是什么肤质| 切除子宫有什么影响| 早期教育是什么| 捡什么废品最值钱| edf是什么意思| 芦笋是什么植物| 冠心病有什么症状| 儿童发烧挂什么科| 锶是什么意思| 长期耳鸣是什么原因| 干贝是什么| 小孩流鼻血挂什么科| 牛顿三大定律是什么| 抄送和密送是什么意思| 胆结石吃什么最好| 悬钟为什么叫绝骨| 频发室性早搏是什么意思| 吃什么增加白细胞最快| 口字旁的字和什么有关| 正常舌头是什么颜色| 过敏是什么样子的| 鼻屎有臭味是什么原因| dolphin是什么意思| 心衰做什么检查能确诊| 脱水有什么症状| 无缘无故吐血是什么原因| nylon是什么面料成分| 嘻哈是什么意思| 静修是什么意思| 日本是什么时候侵略中国的| 青玉是什么玉| 未土是什么土| 嘴巴臭是什么原因| 孕妇梦见鬼是什么预兆| hav是什么病毒| 提篮子是什么意思| 异位胰腺是什么意思| 一月六日是什么星座| 我一言难尽忍不住伤心是什么歌| 举贤不避亲什么意思| uin是什么意思| 下身瘙痒是什么原因| rock是什么意思| 筵是什么意思| 内火重吃什么药见效快| 海参什么人不能吃| hisense是什么牌子| 肝囊肿吃什么药能消除| 灰面是什么面粉| 吃什么对喉咙好| 一片冰心在玉壶是什么意思| 什么叫做t| 前辈是什么意思| 杜康原是什么| 做什么梦暗示你怀孕了| llc是什么意思| 脚气长什么样| 腿抽筋吃什么药最好| 吃鸡蛋胃疼是什么原因| 秉承是什么意思| 2157是什么意思| 空明什么意思| 1978年是什么命| classic是什么意思| 为什么喝牛奶会拉肚子| 肾在什么位置图片| 金银花长什么样子图片| 什么品牌镜片好| 氯丙嗪是什么药| 1970年五行属什么| 毫发无损是什么意思| 69属什么| 什么情况需要打破伤风| 糖醇是什么意思| 长期腹泻是什么病| 调经止带是什么意思| 磨牙是缺什么| 空心菜又叫什么菜| 双侧苍白球钙化是什么意思| 三保是什么| 助听器什么品牌最好| 口腔溃疡吃什么水果好得快| 晚上起夜尿多吃什么药| 乳头内陷是什么原因| 为什么泡完脚后非常痒| 1月25日是什么星座| co2cp在医学上是什么| 碘吃多了有什么危害| 热火朝天是什么意思| 干咳嗽喉咙痒是什么原因| 阑尾炎疼吃什么药| 吃什么可以补黑色素| 疱疹是什么样的| 房颤用什么药| 什么日什么秋| 去痣挂号挂什么科| 手臂内侧是什么经络| 肚脐周围痛挂什么科| 脚气用什么药最好| 2月6号是什么星座| 做妇科检查前需要注意什么| 天兵神将是什么动物| 什么云霄| 甲状腺功能是什么| 狗眼屎多是什么原因| 睡觉喜欢流口水是什么原因| 起伏不定是什么意思| 坐飞机不能带什么东西| 蛋白石是什么石头| 一个虫一个合读什么| 什么手机拍照好看| 什么是盆地| 体脂是什么意思| 亲故是什么意思| 水杨酸有什么作用| 人为什么会磨牙| 茱萸是什么植物| 晕车药有什么副作用| 女生下面叫什么| 夏天脚开裂是什么原因| 梦见妯娌是什么意思| nars是什么牌子| 喜欢是什么| 做阴超有黄体说明什么| 什么级别| 什么通便效果最快最好| 2023年是属什么生肖| 单亲妈妈是什么意思| 乳腺结节3类什么意思| 鱿鱼是什么动物| 关心则乱是什么意思| 许莫氏结节是什么意思| 纯化水是什么水| 心梗有什么症状| 第一次坐飞机注意什么| 身心合一是什么意思| 急性肠胃炎吃什么药好| 扪是什么意思| 天麻有什么作用| 一月十五号是什么星座| 痛风频繁发作说明什么| 代孕什么意思| 儒家是什么意思| 碗莲什么时候开花| 核子是什么| 胃肠蠕动慢吃什么药| 火龙果有什么功效| ecom什么意思| 什么叫肠上皮化生| 梦见表姐是什么意思| 滨海新区有什么好玩的地方| 韩国人为什么叫棒子| 一百万存款算什么水平| 审美观是什么意思| 音序是什么意思| 云南白药里的保险子有什么作用| 夏季吃什么| 男人交生育保险有什么用| 怀孕为什么要吃叶酸| 为什么喝酒| 鸡拉稀吃什么药| 植物神经功能紊乱吃什么药最好| 仟字五行属什么| 米线是用什么做的| ceo是什么意思| 股骨长径是指胎儿什么| 女生胸疼是什么原因| 蚂蚁属于什么动物| 陈皮治什么病| 6月1是什么星座| 土霉素主要是治疗什么病| 黄连治什么病最好| 祖字五行属什么| 十二生肖排第一是什么生肖| 霍山石斛有什么作用| 检查肺部应该挂什么科| 蹼是什么意思| 人体最长的骨头是什么| 相是什么生肖| 晕车药吃多了有什么副作用| 美女胸部长什么样| 世界上最贵的东西是什么| 脚背痒是什么原因| 什么叫尿潴留| 塬字五行属什么| 孙悟空原名叫什么| 锦纶氨纶是什么面料| cl是什么牌子| 3月23是什么星座| 梦见洗澡是什么意思| 一什么鼻子| 红色象征什么| 我丢什么意思| 王源粉丝叫什么| 绝技是什么意思| 梦到公鸡是什么意思| 如日中天的意思是什么| 小孩上火了吃什么降火最快| 乳房检查挂什么科| 男人结扎有什么好处| 民间故事有什么| 什么样的秋天| 马超属什么生肖| 牛栏坑肉桂属于什么茶| fob什么意思| 83年五行属什么| 百度

北汽召回1163辆2015年款绅宝X65汽车 存安全隐患

百度 的小伙伴们看过来~近日,“东沟配套商品房A-4地块安置房项目”项目工程设计方案正在规土局网站公示,快来看看吧↓项目详情基地面积:㎡总建筑面积:㎡容积率:绿地率:%建筑密度:%建筑高度:不大于42m建设内容地上建筑包括10幢14层高层住宅以及社区配套等地下部分主要功能为地下非机动车库、住宅地下室、地下机动车库、配套地下室等四个部分公示详情公示期限:2018年3月20日至2018年4月1日反馈意见截止日期:自公示结束后七日,信件以寄出邮戳为准。

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

Open Shortest Path First
Communication protocol
PurposeRouting protocol
Introduction1989; 36 years ago (1989)
RFC(s)1131, 1247, 1583, 2178, 2328, 3101, 5709, 6549, 6845...
OSPF for IPv6
Communication protocol
Introduction1999; 26 years ago (1999)
RFC(s)2740, 5340, 6845, 6860, 7503, 8362...

OSPF gathers link state information from available routers and constructs a topology map of the network. The topology is presented as a routing table to the internet layer for routing packets by their destination IP address. OSPF supports Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) networks and is widely used in large enterprise networks. IS-IS, another LSR-based protocol, is more common in large service provider networks.

Originally designed in the 1980s, OSPF version 2 is defined in RFC 2328 (1998).[1] The updates for IPv6 are specified as OSPF version 3 in RFC 5340 (2008).[2] OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.

Concepts

edit

OSPF is an interior gateway protocol (IGP) for routing Internet Protocol (IP) packets within a single routing domain, such as an autonomous system. It gathers link state information from available routers and constructs a topology map of the network. The topology is presented as a routing table to the internet layer which routes packets based solely on their destination IP address.

OSPF detects changes in the topology, such as link failures, and converges on a new loop-free routing structure within seconds.[3] It computes the shortest-path tree for each route using a method based on Dijkstra's algorithm. The OSPF routing policies for constructing a route table are governed by link metrics associated with each routing interface. Cost factors may be the distance of a router (round-trip time), data throughput of a link, or link availability and reliability, expressed as simple unitless numbers. This provides a dynamic process of traffic load balancing between routes of equal cost.

OSPF divides the network into routing areas to simplify administration and optimize traffic and resource utilization. Areas are identified by 32-bit numbers, expressed either simply in decimal, or often in the same octet-based dot-decimal notation used for IPv4 addresses. By convention, area 0 (zero), or 0.0.0.0, represents the core or backbone area of an OSPF network. While the identifications of other areas may be chosen at will, administrators often select the IP address of a main router in an area as the area identifier. Each additional area must have a connection to the OSPF backbone area. Such connections are maintained by an interconnecting router, known as an area border router (ABR). An ABR maintains separate link-state databases for each area it serves and maintains summarized routes for all areas in the network.

OSPF runs over IPv4 and IPv6, but does not use a transport protocol such as UDP or TCP. It encapsulates its data directly in IP packets with protocol number 89. This is in contrast to other routing protocols, such as the Routing Information Protocol (RIP) and the Border Gateway Protocol (BGP). OSPF implements its own transport error detection and correction functions. OSPF also uses multicast addressing for distributing route information within a broadcast domain. It reserves the multicast addresses 224.0.0.5 (IPv4) and ff02::5 (IPv6) for all SPF/link state routers (AllSPFRouters) and 224.0.0.6 (IPv4) and ff02::6 (IPv6) for all Designated Routers (AllDRouters).[1]:?185?[2]:?57? For non-broadcast networks, special provisions for configuration facilitate neighbor discovery.[1] OSPF multicast IP packets never traverse IP routers, they never travel more than one hop. The protocol may therefore be considered a link layer protocol, but is often also attributed to the application layer in the TCP/IP model. It has a virtual link feature that can be used to create an adjacency tunnel across multiple hops. OSPF over IPv4 can operate securely between routers, optionally using a variety of authentication methods to allow only trusted routers to participate in routing. OSPFv3 (IPv6) relies on standard IPv6 protocol security (IPsec), and has no internal authentication methods.

For routing IP multicast traffic, OSPF supports the Multicast Open Shortest Path First (MOSPF) protocol.[4] Cisco does not include MOSPF in their OSPF implementations.[5] Protocol Independent Multicast (PIM) in conjunction with OSPF or other IGPs, is widely deployed.

OSPF version 3 introduces modifications to the IPv4 implementation of the protocol.[2] Except for virtual links, all neighbor exchanges use IPv6 link-local addressing exclusively. The IPv6 protocol runs per link, rather than based on the subnet. All IP prefix information has been removed from the link-state advertisements and from the hello discovery packet making OSPFv3 essentially protocol-independent. Despite the expanded IP addressing to 128 bits in IPv6, area and router Identifications are still based on 32-bit numbers.

Router relationships

edit
Network types (OSPFv2)
Network type Point to point (P2P) Broadcast (default) Non-broadcast multi-access (NBMA) Point to multipoint Point to multipoint non broadcast (P2MP-NB) Passive
Max routers per network 2 Unlimited Unlimited Unlimited Unlimited na
Full mesh assumed Yes Yes Yes No No na
Hello timer (default Cisco) 10 10 30 30 30 na
Dead timer (default Cisco) 40 40 120 120 120 na
Wait timer 0 equal to dead timer equal to dead timer 0 0 na
Automatic neighbour discovery Yes Yes No Yes No na
Discovery and hellos are sent to 224.0.0.5 224.0.0.5 Neighbour IP 224.0.0.5 Neighbour IP na
Neighbour communication is sent to 224.0.0.5 Unicast Unicast Unicast Unicast na
LSAs are sent to 224.0.0.5 DR/BDR: 224.0.0.6
All: 224.0.0.5
DR/BDR: 224.0.0.6
All: 224.0.0.5
Unicast Unicast na
Next-hop IP Peer Original router Original router Hub Hub na
Imported in to OSPF as Stub and P2P Transit Transit Stub and P2P Stub and P2P Stub

OSPF supports complex networks with multiple routers, including backup routers, to balance traffic load on multiple links to other subnets. Neighboring routers in the same broadcast domain or at each end of a point-to-point link communicate with each other via the OSPF protocol. Routers form adjacencies when they have detected each other. This detection is initiated when a router identifies itself in a hello protocol packet. Upon acknowledgment, this establishes a two-way state and the most basic relationship. The routers in an Ethernet or Frame Relay network select a designated router (DR) and a backup designated router (BDR) which act as a hub to reduce traffic between routers. OSPF uses both unicast and multicast transmission modes to send "hello" packets and link-state updates.

As a link-state routing protocol, OSPF establishes and maintains neighbor relationships for exchanging routing updates with other routers. The neighbor relationship table is called an adjacency database. Two OSPF routers are neighbors if they are members of the same subnet and share the same area ID, subnet mask, timers and authentication. In essence, OSPF neighborship is a relationship between two routers that allow them to see and understand each other but nothing more. OSPF neighbors do not exchange any routing information – the only packets they exchange are hello packets. OSPF adjacencies are formed between selected neighbors and allow them to exchange routing information. Two routers must first be neighbors and only then, can they become adjacent. Two routers become adjacent if at least one of them is designated router or backup designated router (on multiaccess-type networks), or they are interconnected by a point-to-point or point-to-multipoint network type. For forming a neighbor relationship between, the interfaces used to form the relationship must be in the same OSPF area. While an interface may be configured to belong to multiple areas, this is generally not practiced. When configured in a second area, an interface must be configured as a secondary interface.

Operation modes

edit

The OSPF can have different operation modes on the following setups on an interface or network:

  • Point-to-point. Each router advertises itself by periodically multicasting hello packets. No designated router is elected. The interface can be IP unnumbered (without a unique IP address assigned to it).
  • Broadcast (default), each router advertises itself by periodically multicasting hello packets.
  • Non-broadcast multi-access, with the use of designated routers. May need static configuration. Packets are sent as unicast.
  • Point-to-multipoint, where OSPF treats neighbours as a collection of point-to-point links. No designated router is elected. Separate hello packets are sent to each neighbor.
  • Point to Multipoint Non Broadcast (P2MP-NB), No designated router is elected. Separate hello packets are sent to each neighbor, Packets are sent as unicast.
  • Passive, Only advertised to other neighbours. No adjacency is advertised on network.

Indirect connections

edit

Virtual link over Virtual links, tunneling and sham links, are a form of connections that goes over the routing engine, and is not a direct connection to the remote host.

  • Virtual links: The packets are sent as unicast. Can only be configured on a non-backbone area (but not stub-area). Endpoints need to be ABR, the virtual links behave as unnumbered point-to-point connections. The cost of an intra-area path between the two routers is added to the link.
  • Virtual link over tunneling (like GRE and WireGuard): Since OSPF does not support virtual links for areas other than the backbone, a workaround is the use of tunneling.[6] If the same IP or router ID is used, the link creates two equal-cost routes to the destination.[7]
  • Sham link[8]:[9][10] An intra-area link that connects two sites via the MPLS VPN backbone that is preferred to an internal intra-area "OSPF backdoor link" between the same two sites. A sham link is only needed if the MPLS VPN backbone is preferred over the OSPF backdoor link.

Adjacency state machine

edit

Each OSPF router within a network communicates with other neighboring routers on each connecting interface to establish the states of all adjacencies. Every such communication sequence is a separate conversation identified by the pair of router IDs of the communicating neighbors. RFC 2328 specifies the protocol for initiating these conversations (Hello Protocol) and for establishing full adjacencies (database description packets, link-state request packets). During its course, each router conversation transitions through a maximum of eight conditions defined by a state machine:[1][11]

Neighbor state changes

edit
 
Neighbor state changes (Hello Protocol)
  1. Down: The state down represents the initial state of a conversation when no information has been exchanged and retained between routers with the Hello Protocol.
  2. Attempt: The attempt state is similar to the down state, except that a router is in the process of efforts to establish a conversation with another router, but is only used on non-broadcast multiple-access networks (NBMAs).
  3. Init: The init state indicates that a hello packet has been received from a neighbor, but the router has not established a two-way conversation.
  4. Two-way: The two-way state indicates the establishment of a bidirectional conversation between two routers. This state immediately precedes the establishment of adjacency. This is the lowest state of a router that may be considered as a DR.

Database exchange

edit
 
Neighbor state changes (database exchange)
  1. Exchange start (exstart): The exstart state is the first step of adjacency of two routers.
  2. Exchange: In the exchange state, a router is sending its link-state database information to the adjacent neighbor. At this state, a router can exchange all OSPF routing protocol packets.
  3. Loading: In the loading state, a router requests the most recent link-state advertisements (LSAs) from its neighbor discovered in the previous state.
  4. Full: The full state concludes the conversation when the routers are fully adjacent, and the state appears in all router- and network-LSAs. The link-state databases of the neighbors are fully synchronized.

Broadcast networks

edit

In broadcast multiple-access networks, neighbor adjacency is formed dynamically using multicast hello packets to 224.0.0.5.

IP 192.0.2.1 > 224.0.0.5: OSPFv2, hello
IP 192.0.2.2 > 224.0.0.5: OSPFv2, hello
IP 192.0.2.1 > 192.0.2.2: OSPFv2, database description
IP 192.0.2.2 > 192.0.2.1: OSPFv2, database description

Passive network

edit

A network where OSPF adverts the network, but the OSPF will not start neighbour adjacency.

Non-broadcast networks

edit

In a non-broadcast multiple-access (NBMA) network, a neighbor adjacency is formed by sending unicast packets to another router. A non-broadcast network can have more than two routers, but broadcast is not supported.

IP 192.0.2.1 > 192.0.2.2: OSPFv2, hello
IP 192.0.2.2 > 192.0.2.1: OSPFv2, hello
IP 192.0.2.1 > 192.0.2.2: OSPFv2, database description
IP 192.0.2.2 > 192.0.2.1: OSPFv2, database description

Examples of non-broadcast networks:


  • Requires all routers to be able to communicate directly, on the same network.
  • Designated Router is elected for the network.
  • LSA is generated for the network.

OSPF areas

edit

A network is divided into OSPF areas that are logical groupings of hosts and networks. An area includes its connecting router having an interface for each connected network link. Each router maintains a separate link-state database for the area whose information may be summarized towards the rest of the network by the connecting router. Thus, the topology of an area is unknown outside the area. This reduces the routing traffic between parts of an autonomous system.

OSPF can handle thousands of routers with more a concern of reaching capacity of the forwarding information base (FIB) table when the network contains lots of routes and lower-end devices.[12] Modern low-end routers have a full gigabyte of RAM,[13] which allows them to handle many routers in an area 0. Many resources[14] refer to OSPF guides from over 20 years ago where it was impressive to have 64 MB of RAM.

Areas are uniquely identified with 32-bit numbers. The area identifiers are commonly written in the dot-decimal notation, familiar from IPv4 addressing. However, they are not IP addresses and may duplicate, without conflict, any IPv4 address. The area identifiers for IPv6 implementations (OSPFv3) also use 32-bit identifiers written in the same notation. When dotted formatting is omitted, most implementations expand area 1 to the area identifier 0.0.0.1, but some have been known to expand it as 1.0.0.0.[citation needed]

Several vendors (Cisco, Allied Telesis, Juniper, Alcatel-Lucent, Huawei, Quagga), implement totally stubby and NSSA totally stubby area for stub and not-so-stubby areas. Although not covered by RFC standards, they are considered by many to be standard features in OSPF implementations.

OSPF defines several area types:

  • Backbone
  • Non-backbone/regular
  • Stub
  • Totally stubby
  • Not-so-stubby
  • Totally not-so-stubby
  • Transit

Backbone area

edit
 
Example of backbone, area 0 with 2 routers, R1 and R2

The backbone area (also known as area 0 or area 0.0.0.0) forms the core of an OSPF network. All other areas are connected to it, either directly or through other routers. OSPF requires this to prevent routing loops.[15] Inter-area routing happens via routers connected to the backbone area and to their own associated areas. It is the logical and physical structure for the 'OSPF domain' and is attached to all nonzero areas in the OSPF domain. In OSPF the term autonomous system boundary router (ASBR) is historic, in the sense that many OSPF domains can coexist in the same Internet-visible autonomous system, RFC 1996.[16][17]

All OSPF areas must connect to the backbone area. This connection, however, can be through a virtual link. For example, assume area 0.0.0.1 has a physical connection to area 0.0.0.0. Further assume that area 0.0.0.2 has no direct connection to the backbone, but this area does have a connection to area 0.0.0.1. Area 0.0.0.2 can use a virtual link through the transit area 0.0.0.1 to reach the backbone. To be a transit area, an area has to have the transit attribute, so it cannot be stubby in any way.

Regular area

edit
 
Figure show 3 routers with 2 areas, area 0 and area 122, sharing one router.

A regular area is just a non-backbone (nonzero) area without specific feature, generating and receiving summary and external LSAs. The backbone area is a special type of such area.

Stub area

edit
 
In hello packets the E-flag is not high, indicating "External routing: not capable"

A stub area is an area that does not receive route advertisements external to the AS and routing from within the area is based entirely on a default route. An ABR deletes type 4 and 5 LSAs from internal routers, sends them a default route of 0.0.0.0 and turns itself into a default gateway. This reduces LSDB and routing table size for internal routers.

Modifications to the basic concept of stub area have been implemented by systems vendors, such as the totally stubby area (TSA) and the not-so-stubby area (NSSA), both an extension in Cisco Systems routing equipment.

Totally stubby area

edit
 

A totally stubby area is similar to a stub area. However, this area does not allow summary routes in addition to not having external routes, that is, inter-area (IA) routes are not summarized into totally stubby areas. The only way for traffic to get routed outside the area is a default route which is the only Type-3 LSA advertised into the area. When there is only one route out of the area, fewer routing decisions have to be made by the route processor, which lowers system resource utilization.

Occasionally, it is said that a TSA can have only one ABR.[18]

Not-so-stubby area

edit
 
In hello packets the N-flag is set high, indicating "NSSA: supported"

A not-so-stubby area (NSSA) is a type of stub area that can import autonomous system external routes and send them to other areas, but still cannot receive AS-external routes from other areas.[19]

NSSA is an extension of the stub area feature that allows the injection of external routes in a limited fashion into the stub area. A case study simulates an NSSA getting around the stub-area problem of not being able to import external addresses. It visualizes the following activities: the ASBR imports external addresses with a type 7 LSA, the ABR converts a type 7 LSA to type 5 and floods it to other areas, the ABR acts as an ASBR for other areas. The ASBRs do not take type 5 LSAs and then convert to type 7 LSAs for the area.

Totally not-so-stubby area

edit
 

An addition to the standard functionality of an NSSA, the totally stubby NSSA is an NSSA that takes on the attributes of a TSA, meaning that type 3 and 4 summary routes are not flooded into this type of area. It is also possible to declare an area both totally stubby and not-so-stubby, which means that the area will receive only the default route from area 0.0.0.0, but can also contain an autonomous system boundary router (ASBR) that accepts external routing information and injects it into the local area, and from the local area into area 0.0.0.0.

Redistribution into an NSSA area creates a special type of LSA known as type 7, which can exist only in an NSSA area. An NSSA ASBR generates this LSA, and an NSSA ABR router translates it into a type 5 LSA, which gets propagated into the OSPF domain.

A newly acquired subsidiary is one example of where it might be suitable for an area to be simultaneously not-so-stubby and totally stubby if the practical place to put an ASBR is on the edge of a totally stubby area. In such a case, the ASBR does send externals into the totally stubby area, and they are available to OSPF speakers within that area. In Cisco's implementation, the external routes can be summarized before injecting them into the totally stubby area. In general, the ASBR should not advertise default into the TSA-NSSA, although this can work with extremely careful design and operation, for the limited special cases in which such an advertisement makes sense.

By declaring the totally stubby area as NSSA, no external routes from the backbone, except the default route, enter the area being discussed. The externals do reach area 0.0.0.0 via the TSA-NSSA, but no routes other than the default route enter the TSA-NSSA. Routers in the TSA-NSSA send all traffic to the ABR, except to routes advertised by the ASBR.

Router types

edit

OSPF defines the following overlapping categories of routers:

Internal router (IR)
An internal router has all its interfaces belonging to the same area.
Area border router (ABR)
An area border router is a router that connects one or more areas to the main backbone network. It is considered a member of all areas it is connected to. An ABR keeps multiple instances of the link-state database in memory, one for each area to which that router is connected.
Backbone router (BR)
A backbone router has an interface to the backbone area. Backbone routers may also be area border routers, but do not have to be.
Autonomous system boundary router (ASBR)
An autonomous system boundary router is a router that is connected by using more than one routing protocol and that exchanges routing information with routers autonomous systems. ASBRs typically also run an exterior routing protocol (e.g., BGP), or use static routes, or both. An ASBR is used to distribute routes received from other, external ASs throughout its own autonomous system. An ASBR creates External LSAs for external addresses and floods them to all areas via ABR. Routers in other areas use ABRs as next hops to access external addresses. Then ABRs forward packets to the ASBR that announces the external addresses.

The router type is an attribute of an OSPF process. A given physical router may have one or more OSPF processes. For example, a router that is connected to more than one area, and which receives routes from a BGP process connected to another AS, is both an area border router and an autonomous system boundary router.

Each router has an identifier, customarily written in the dotted-decimal format (e.g., 1.2.3.4) of an IP address. This identifier must be established in every OSPF instance. If not explicitly configured, the highest logical IP address will be duplicated as the router identifier. However, since the router identifier is not an IP address, it does not have to be a part of any routable subnet in the network, and often isn't to avoid confusion.

Non-point-to-point network

edit
 
OSPF-type 2 Network-LSA figur.drawio

On networks (same subnet) with networks type of:

  • Broadcast
  • Non-Broadcast Multi-Access (NBMA)

A system of designated router (DR) and backup designated router (BDR), is used to reducing network traffic by providing a source for routing updates. This is done using multicast addresses:

  • 224.0.0.5, all routers in the topology will listen on that multicast address.
  • 224.0.0.6, DR and BDR will listen on that multicast address.

The DR and BDR maintains a complete topology table of the network and sends the updates to the other routers via multicast. All routers in a multi-access network segment will form a leader/follower relationship with the DR and BDR. They will form adjacencies with the DR and BDR only. Every time a router sends an update, it sends it to the DR and BDR on the multicast address 224.0.0.6. The DR will then send the update out to all other routers in the area, to the multicast address 224.0.0.5. This way all the routers do not have to constantly update each other, and can rather get all their updates from a single source. The use of multicasting further reduces the network load. DRs and BDRs are always setup/elected on OSPF broadcast networks. DR's can also be elected on NBMA (Non-Broadcast Multi-Access) networks such as Frame Relay or ATM. DRs or BDRs are not elected on point-to-point links (such as a point-to-point WAN connection) because the two routers on either side of the link must become fully adjacent and the bandwidth between them cannot be further optimized. DR and non-DR routers evolve from 2-way to full adjacency relationships by exchanging DD, Request, and Update.

Designated router

edit

A designated router (DR) is the router interface elected among all routers on a particular multiaccess network segment, generally assumed to be broadcast multiaccess. Special techniques, often vendor-dependent, may be needed to support the DR function on non-broadcast multiaccess (NBMA) media. It is usually wise to configure the individual virtual circuits of an NBMA subnet as individual point-to-point lines; the techniques used are implementation-dependent.

Backup designated router

edit

A backup designated router (BDR) is a router that becomes the designated router if the current designated router has a problem or fails. The BDR is the OSPF router with the second-highest priority at the time of the last election.

A given router can have some interfaces that are designated (DR) and others that are backup designated (BDR), and others that are non-designated. If no router is a DR or a BDR on a given subnet, the BDR is first elected, and then a second election is held for the DR.[1]:?75?

DR Other

edit

A router that has not been selected to be designated router (DR) or backup designated router (BDR). The router forms an adjacency to both the designated router (DR) and the backup designated router (BDR).

For other non (B)DR, the adjacency stops at 2-ways State.

Designated router election

edit

The DR is elected based on the following default criteria:

  • If the priority setting on an OSPF router is set to 0, that means it can NEVER become a DR or BDR.
  • If no DR exists on the network, routes will wait until Wait Timer runs out.
  • When a DR fails and the BDR takes over, there is another election to see who becomes the replacement BDR.
  • The router sending the Hello packets with the highest priority wins the election.
  • If two or more routers tie with the highest priority setting, the router sending the Hello with the highest RID (Router ID) wins. NOTE: a RID is the highest logical (loopback) IP address configured on a router, if no logical/loopback IP address is set then the router uses the highest IP address configured on its active interfaces (e.g. 192.168.0.1 would be higher than 10.1.1.2).
  • Usually the router with the second-highest priority number becomes the BDR.
  • The priority values range between 0 – 255,[20] with a higher value increasing its chances of becoming DR or BDR.
  • If a higher priority OSPF router comes online after the election has taken place, it will not become DR or BDR until (at least) the DR and BDR fail.
  • If the current DR 'goes down' the current BDR becomes the new DR and a new election takes place to find another BDR. If the new DR then 'goes down' and the original DR is now available, still previously chosen BDR will become DR.

Routing update flow

edit

When DR has Routing update

edit
  1. DR sends LSU to 224.0.0.5
  2. BDR sends LSUAck to 224.0.0.5
  3. DR Other sends LSUAck to 224.0.0.6

When BDR has Routing update

edit
  1. BDR sends LSU to 224.0.0.5
  2. DR sends LSUAck to 224.0.0.5
  3. DR Other sends LSUAck to 224.0.0.6

When DR Other has Routing update

edit
  1. DR Other sends LSU to 224.0.0.6
  2. DR sends LSA to 224.0.0.5
  3. BDR sends LSUAck to 224.0.0.5
  4. Non-source routers, DR Other sends LSUAck to 224.0.0.6

Protocol messages

edit
OSPF v2 header format, field lengths in bytes
1 1 2 4 4 2 2 8
Version 2 Type Packet length Router ID Area ID Checksum AuType Authentication
OSPF v3 header format, field lengths in bytes
1 1 2 4 4 2 1 1
Version 3 Type Packet length Router ID Area ID Checksum Instance ID Reserved

Unlike other routing protocols, OSPF does not carry data via a transport protocol, such as the User Datagram Protocol (UDP) or the Transmission Control Protocol (TCP). Instead, OSPF forms IP datagrams directly, packaging them using protocol number 89 for the IP Protocol field. OSPF defines five different message types, for various types of communication. Multiple packets can be sent per frame.

OSPF uses 5 packet types:

  • Hello
  • Database description
  • Link state request
  • Link state update
  • Link state acknowledgement

Hello Packet

edit
OSPF v2 hello packet, field lengths in bytes
24 4 2 1 1 4 4 4 4
Header
Network Mask Hello Interval Options Router Priority Router Dead Interval Designated Router ID Backup Designated Router ID Neighbor ID
OSPF v3 hello packet, field lengths in bytes
16 4 1 3 2 2 4 4 4
Header
Interface ID Router Priority Options Hello Interval Router Dead Interval Designated Router ID Backup Designated Router ID Neighbor ID

OSPF's Hello messages are used as a form of greeting, to allow a router to discover other adjacent routers on its local links and networks. The messages establish relationships between neighboring devices (called adjacencies) and communicate key parameters about how OSPF is to be used in the autonomous system or area. During normal operation, routers send hello messages to their neighbors at regular intervals (the hello interval); if a router stops receiving hello messages from a neighbor, after a set period (the dead interval) the router will assume the neighbor has gone down.

Database description (DBD)

edit
OSPF v2 and v3 database description, field lengths in bytes
16 or 24 2 1 1 1 4 Variable
Header
Interface MTU Hello Interval Options Flags DD sequence number LSA Headers

Database description messages contain descriptions of the topology of the autonomous system or area. They convey the contents of the link-state database (LSDB) for the area from one router to another. Communicating a large LSDB may require several messages to be sent by having the sending device designated as a leader device and sending messages in sequence, with the follower (recipient of the LSDB information) responding with acknowledgments.

edit
OSPF v2 link state request, field lengths in bytes
24 4 4 4
Header
LS Type Link State ID Advertising Router
OSPF v3 link state request, field lengths in bytes
16 2 2 4 4
Header
Reserved LS Type Link State ID Advertising Router
Link state request (LSR)
Link state request messages are used by one router to request updated information about a portion of the LSDB from another router. The message specifies the link(s) for which the requesting device wants more current information.
OSPF v2 and v3 link state update packet, field lengths in bytes
24 or 16 4 Variable
Header
# LSAs List of LSAs
Link state update (LSU)
Link-state update messages contain updated information about the state of certain links on the LSDB. They are sent in response to a link state request message, and also broadcast or multicast by routers on a regular basis. Their contents are used to update the information in the LSDBs of routers that receive them.
OSPF v2 and v3 link state acknowledgment, field lengths in bytes
24 or 16 Variable
Header
List of LSAs
Link state acknowledgment (LSAck)
Link-state acknowledgment messages provide reliability to the link-state exchange process, by explicitly acknowledging receipt of a Link State Update message.
OSPF link state advertisements
LS type LS name Generated by Description
1 Router-LSAs Each internal router within an area
 

The link-state ID of the type 1 LSA is the originating router ID. Router-LSAs, describe the following types of interfaces:

  • Point-to-point connection to another router
  • Connection to a transit network
  • Connection to a stub network (Reserved in v3)
  • Virtual link
2 Network-LSAs The DR
 
Originated for broadcasts and NBMA networks by the designated router. This LSA contains the list of routers connected to the network. The link-state ID of the type 2 LSA is the IP interface address of the DR.
3 Summary-LSAs The ABR
 
Type 3 summary-LSAs describe routes to networks.

To inform other areas about inter-area routers. These routes can also be summarised.

4 ASBR-summary The ABR Type 4 describe routes to AS boundary routers beyond its area.

The area border router (ABR) generates this LSA to inform other routers in the OSPF domain, that the matching router is an autonomous system boundary router (ASBR), so that the external LSAs (Type 5 / Type 7) it sent may be properly resolved outside its own area.

5 AS-external-LSAs The ASBR
 
Type 5 These describe routes advertised by the ASBR.

LSAs contain information imported into OSPF from other routing processes. Together with Type 4 they describe the way to an external route.

7 NSSA external link-state advertisements The ASBR, within a not-so-stubby area Type 7-LSAs are identical to type-5 LSAs. Type-7 LSAs are only flooded within the NSSA. At the area border router, selected type-7 LSAs are translated into type 5-LSAs and flooded into the backbone.
8 Link-LSA (v3) Each internal router within a link Provide it local router's link-local address to all other routers on the local network.
9 Intra-Area-Prefix-LSAs (v3) Each internal router within an area Replaces some of the functionality of Router-LSAs; stub network segment, or an attached transit network segment.

OSPF v2 area types and accepted LSAs

edit

Not all area types use all LSA. Below is a matrix of accepted LSAs.

Overview of OSPF area types and accepted LSAs: [21] [22]
Within a single area Inter area
Area type LSA 1 - router LSA 2 - network LSA 7 - NSSA external LSA 3 - network summary LSA 4 - ASBR Summary LSA 5 - AS external
Backbone Yes Yes No, converted into a Type 5 by the ABR Yes Yes Yes
Non-backbone Yes Yes No, converted into a Type 5 by the ABR Yes Yes Yes
Stub Yes Yes No, Default route Yes No, Default route No, Default route
Totally stubby Yes Yes No, Default route No, Default route No, Default route No, Default route
Not-so-stubby Yes Yes Yes Yes No, Default route No, Default route
Totally not-so-stubby Yes Yes Yes No, Default route No, Default route No, Default route

Routing metrics

edit

OSPF uses path cost as its basic routing metric, which was defined by the standard not to equate to any standard value such as speed, so the network designer could pick a metric important to the design. In practice, it is determined by comparing the speed of the interface to a reference-bandwidth for the OSPF process. The cost is determined by dividing the reference bandwidth by the interface speed (although the cost for any interface can be manually overridden).[23][24] Here is an example table that shows the routing metric or 'cost calculation' on an interface.

  • Type-1 LSA has a size of 16-bit field (65,535 in decimal)[25]
  • Type-3 LSA has a size of 24-bit field (16,777,216 in decimal)
Calculation for reference speed
Interface speed Link cost Uses
Default (100 Mbit/s) 200 Gbit/s
800 Gbit/s 1 1 QSFP-DD112
200 Gbit/s 1 1 SFP-DD
40 Gbit/s 1 5 QSFP+
25 Gbit/s 1 8 SFP28
10 Gbit/s 1 20 10 GigE, common in data centers
5 Gbit/s 1 40 NBase-T, Wi-Fi routers
1 Gbit/s 1 200 common gigabit port
100 Mbit/s 1 2000 low-end port
10 Mbit/s 10 20000 1990's speed.

OSPF is a layer 3 protocol. If a layer 2 switch is between the two devices running OSPF, one side may negotiate a speed different from the other side. This can create an asymmetric routing on the link (Router 1 to Router 2 could cost '1' and the return path could cost '10'), which may lead to unintended consequences.

Metrics, however, are only directly comparable when of the same type. Four types of metrics are recognized. In decreasing preference (for example, an intra-area route is always preferred to an external route regardless of metric), these types are:

  1. Intra-area
  2. Inter-area
  3. External Type 1, which includes both the external path cost and the sum of internal path costs to the ASBR that advertises the route,[26]
  4. External Type 2, the value of which is solely that of the external path cost,

OSPF v3

edit

OSPF version 3 introduces modifications to the IPv4 implementation of the protocol.[2] Despite the expansion of addresses to 128 bits in IPv6, area and router identifications are still 32-bit numbers.

High-level changes

edit
  • Except for virtual links, all neighbor exchanges use IPv6 link-local addressing exclusively. The IPv6 protocol runs per link, rather than based on the subnet.
  • All IP prefix information has been removed from the link-state advertisements and from the hello discovery packet, making OSPFv3 essentially protocol-independent.
  • Three separate flooding scopes for LSAs:
    • Link-local scope: LSA is flooded only on the local link and no further.
    • Area scope: LSA is flooded throughout a single OSPF area.
    • AS scope: LSA is flooded throughout the routing domain.
  • Use of IPv6 link-local addresses, for neighbor discovery, auto-configuration.
  • Authentication has been moved to the IP Authentication Header

Changes introduced in OSPF v3, then backported by vendors to v2

edit
  • Explicit support for multiple instances per link[27]

Packet format changes

edit
  • OSPF version number changed to 3
  • From the LSA header, the options field has been removed.
  • In hello packets and database description, the options field is changed from 16 to 24 bits.
  • In hello packet, the address information has been removed. The interface ID has been added.
  • In router-LSAs, two options bits, the R-bit and the V6-bit, have been added.
    • R-bit: allows for multi-homed hosts to participate in the routing protocol.
    • V6-bit: specializes the R-bit.
  • Add instance ID, which allows multiple OSPF protocol instances on the same logical interface.

LSA format changes

edit
  • The LSA type field is changed to 16 bits.
    • Add support for handling unknown LSA types
    • Three bits are used for encoding flooding scope.
  • With IPv6, addresses in LSAs are expressed as prefix and prefix length.
  • In router-LSAs and network-LSAs, the address information is removed.
  • Router-LSAs and network-LSAs are made network-protocol independent.
  • A new LSA type is added, link-LSA, which provides the router's link-local address to all other routers attached to the logical interface, provides a list of IPv6 prefixes to associate with the link, and can send information that reflect the router's capabilities.
  • LSA Type-3 summary-LSAs have been renamed "inter-area-prefix-LSAs".
  • LSA Type-4 summary LSAs have been renamed "inter-area-router-LSAs".
  • Intra-area-prefix-LSA is added, an LSA that carries all IPv6 prefix information.

OSPF over MPLS VPN

edit
 
BGP extended communities transitive for OSPF[28]
Type Type field sub value name
Two-octet AS 0x00 0x05 OSPF domain identifier
Four-octet AS 0x02 0x05 OSPF domain identifier
IPv4 address 0x01 0x05 OSPF domain identifier
IPv4 address 0x01 0x07 OSPF route ID
Opaque 0x03 0x06 OSPF route type
BGP extended communities
Attribute for OSPF route type
4 byte 1 byte 1 byte
Area number Route type Options

A customer can use OSPF over a MPLS VPN, where the service provider uses BGP or RIP as their interior gateway protocol.[8] When using OSPF over MPLS VPN, the VPN backbone becomes part of the OSPF backbone area 0. In all areas, isolated copies of the IGP are run.

Advantages:

To achieve this, a modified OSPF-BGP redistribution is used. All OSPF routes retain the source LSA type and metric.[29][30] To prevent loops, an optional DN bit[31] is set by the service provider in LSAs from the provider equipment to indicate that a route has already been sent to the customer's equipment.

OSPF extensions

edit

Traffic engineering

edit

OSPF-TE is an extension to OSPF extending the expressivity to allow for traffic engineering and use on non-IP networks.[32] Using OSPF-TE, more information about the topology can be exchanged using opaque LSA carrying type–length–value elements. These extensions allow OSPF-TE to run completely out of band of the data plane network. This means that it can also be used on non-IP networks, such as optical networks.

OSPF-TE is used in GMPLS networks as a means to describe the topology over which GMPLS paths can be established. GMPLS uses its own path setup and forwarding protocols, once it has the full network map.

In the Resource Reservation Protocol (RSVP), OSPF-TE is used for recording and flooding RSVP signaled bandwidth reservations for label-switched paths within the link-state database.

Optical routing

edit

RFC 3717 documents work in optical routing for IP based on extensions to OSPF and IS-IS.[33]

Multicast Open Shortest Path First

edit

The Multicast Open Shortest Path First (MOSPF) protocol is an extension to OSPF to support multicast routing. MOSPF allows routers to share information about group memberships.

Notable implementations

edit

Applications

edit

OSPF is a widely deployed routing protocol that can converge a network in a few seconds and guarantee loop-free paths. It has many features that allow the imposition of policies about the propagation of routes that it may be appropriate to keep local, for load sharing, and for selective route importing. IS-IS, in contrast, can be tuned for lower overhead in a stable network, the sort more common in ISP than enterprise networks. There are some historical accidents that made IS-IS the preferred IGP for ISPs, but ISPs today may well choose to use the features of the now-efficient implementations of OSPF,[34] after first considering the pros and cons of IS-IS in service provider environments.[35]

OSPF can provide better load-sharing on external links than other IGPs.[citation needed] When the default route to an ISP is injected into OSPF from multiple ASBRs as a Type I external route and the same external cost specified, other routers will go to the ASBR with the least path cost from its location. This can be tuned further by adjusting the external cost. If the default route from different ISPs is injected with different external costs, as a Type II external route, the lower-cost default becomes the primary exit and the higher-cost becomes the backup only.

See also

edit

References

edit
  1. ^ a b c d e J. Moy (April 1998). OSPF Version 2. Network Working Group. doi:10.17487/RFC2328. STD 54. RFC 2328. Internet Standard 54. Obsoletes RFC 2178. Updated by RFC 5709, 6549, 6845, 6860, 7474 and 8042.
  2. ^ a b c d R. Coltun; D. Ferguson; J. Moy (July 2008). A. Lindem (ed.). OSPF for IPv6. IETF Network Working Group. doi:10.17487/RFC5340. RFC 5340. Proposed Standard. Obsoletes RFC 2740. Updated by RFC 6845, 6860, 8362, 7503 and 9454
  3. ^ OSPF Convergence, August 6, 2009, archived from the original on August 5, 2016, retrieved June 13, 2016
  4. ^ J. Moy (March 1994). Multicast Extensions to OSPF. Network Working Group. doi:10.17487/RFC1584. RFC 1584. Historic.
  5. ^ IP Routing: OSPF Configuration Guide, Cisco Systems, archived from the original on August 10, 2016, retrieved June 13, 2016, Cisco routers do not support LSA Type 6 Multicast OSPF (MOSPF), and they generate syslog messages if they receive such packets.
  6. ^ "[Junos] GRE Configuration Example - Juniper Networks". kb.juniper.net. Archived from the original on November 28, 2021. Retrieved November 28, 2021.
  7. ^ "Generic Routing Encapsulation (GRE) | Interfaces User Guide for Switches | Juniper Networks TechLibrary". www.juniper.net. Archived from the original on November 28, 2021. Retrieved November 28, 2021.
  8. ^ a b E. Rosen; P. Psenak; P. Pillay-Esnault (June 2006). OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs). Network Working Group. doi:10.17487/RFC4577. RFC 4577. Proposed Standard. Updates RFC 4364.
  9. ^ "OSPF Neighbor States". Cisco. Archived from the original on October 26, 2018. Retrieved October 28, 2018.
  10. ^ "Show 134 – OSPF Design Part 1 – Debunking the Multiple Area Myth". Packet Pushers. Archived from the original on June 2, 2021. Retrieved February 2, 2021. podcast debunking 50-router advice on old Cisco article
  11. ^ Mikrotik RB4011 has 1 GB RAM for example Archived August 16, 2021, at the Wayback Machine, mikrotik.com, Retrieved Feb 1, 2021.
  12. ^ "Stub Area Design Golden Rules". Groupstudy.com. Archived from the original on August 31, 2000. Retrieved November 30, 2011. 64 MB of RAM was a big deal in 2020 for OSPF.
  13. ^ Doyle, Jeff (September 10, 2007). "My Favorite Interview Question". Network World. Archived from the original on December 28, 2021. Retrieved December 28, 2021.
  14. ^ (ASGuidelines 1996, p. 25)
  15. ^ J. Hawkinson; T. Bates (March 1996). Guidelines for creation, selection, and registration of an Autonomous System (AS). Network Working Group. doi:10.17487/RFC1930. BCP 6. RFC 1930. Best Current Practice 6. Updated by RFC 6996 and 7300.
  16. ^ "Stub Area Design Golden Rules". Groupstudy.com. Archived from the original on August 31, 2000. Retrieved November 30, 2011.. This is not necessarily true. If there are multiple ABRs, as might be required for high availability, routers interior to the TSA will send non-intra-area traffic to the ABR with the lowest intra-area metric (the closest ABR) but that requires special configuration.
  17. ^ P. Murphy (January 2001). The OSPF Not-So-Stubby Area (NSSA) Option. Network Working Group. doi:10.17487/RFC3101. RFC 3101. Proposed Standard. Obsoletes RFC 1587.
  18. ^ "Cisco IOS IP Routing: OSPF Command Reference" (PDF). Cisco Systems. April 2011. Archived from the original (PDF) on April 25, 2012.
  19. ^ "juniper configuring-ospf-areas". Juniper Networks. January 18, 2021. Archived from the original on October 23, 2021. Retrieved October 23, 2021.
  20. ^ "OSPF Area's Explained". Packet Coders. January 23, 2019. Archived from the original on October 23, 2021. Retrieved October 23, 2021.
  21. ^ "reference-bandwidth (Protocols OSPF) | Junos OS | Juniper Networks". www.juniper.net. Retrieved March 26, 2025.
  22. ^ Adjusting OSPF Costs Archived April 14, 2021, at the Wayback Machine, OReilly.com
  23. ^ "OSPF Stub Router Advertisement". Ietf Datatracker. Internet Engineering Task Force. June 2001. Archived from the original on October 23, 2021. Retrieved October 23, 2021.
  24. ^ Whether an external route is based on a Type-5 LSA or a Type-7 LSA (NSSA) does not affect its preference. See RFC 3101, section 2.5.
  25. ^ "secondary (Protocols OSPF) - TechLibrary - Juniper Networks". www.juniper.net. Archived from the original on November 7, 2021. Retrieved November 7, 2021.
  26. ^ "Border Gateway Protocol (BGP) Extended Communities". www.iana.org. Archived from the original on November 28, 2021. Retrieved November 28, 2021.
  27. ^ "MPLS VPN OSPF PE and CE Support". Cisco. Archived from the original on November 28, 2021. Retrieved November 28, 2021.
  28. ^ Cisco. "Using OSPF in an MPLS VPN Environment" (PDF). Archived (PDF) from the original on October 10, 2022. Retrieved November 28, 2021.
  29. ^ E. Rosen; P. Psenak; P. Pillay-Esnault (June 2006). Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs). Network Working Group. doi:10.17487/RFC4576. RFC 4576. Proposed Standard.
  30. ^ Katz, D; D. Yeung (September 2003). Traffic Engineering (TE) Extensions to OSPF Version 2. The Internet Society. doi:10.17487/RFC3630. OSPF-TEextensions. Retrieved September 28, 2007. Archived February 14, 2012, at the Wayback Machine
  31. ^ B. Rajagopalan; J. Luciani; D. Awduche (March 2004). IP over Optical Networks: A Framework. Internet Engineering Task Force. doi:10.17487/RFC3717. RFC 3717.
  32. ^ Berkowitz, Howard (1999). OSPF Goodies for ISPs. North American Network Operators Group NANOG 17. Montreal. Archived from the original on June 12, 2016.
  33. ^ Katz, Dave (2000). OSPF and IS-IS: A Comparative Anatomy. North American Network Operators Group NANOG 19. Albuquerque. Archived from the original on June 20, 2018.

Further reading

edit
edit
人为什么会出汗 2000年为什么叫千禧年 贵州有什么 陶土样大便见于什么病 乙肝表面抗体阴性是什么意思
银行卡年费是什么意思 疝气手术是什么 什么是蛇缠腰病 月经提前是什么原因引起的 口水粘稠是什么原因
什么情况下吃奥司他韦 二大爷是什么意思 外感风寒是什么意思 为什么睡觉流口水 嘎巴拉是什么
为什么会得子宫腺肌症 吃什么能让子宫瘤变小 许莫氏结节是什么 制动是什么意思 五光十色是什么意思
yeezy是什么牌子hcv9jop6ns6r.cn 阴阳两虚用什么药hcv7jop6ns1r.cn 现在最好的避孕方法是什么jasonfriends.com 低蛋白血症是什么意思hcv8jop6ns5r.cn 女人的逼长什么样hcv8jop5ns3r.cn
女人骨质疏松吃什么最好hcv9jop0ns6r.cn 资治通鉴讲的是什么dayuxmw.com 乳腺ca是什么意思onlinewuye.com 糖尿病吃什么食物最好hcv7jop4ns8r.cn 脉涩是什么意思hcv9jop5ns2r.cn
黄晓明的老婆叫什么名字hcv7jop5ns0r.cn 囡是什么意思hcv8jop0ns1r.cn 胸闷气短吃什么药wmyky.com 石斤读什么hcv9jop8ns0r.cn 什么人不能吃海参hcv9jop8ns3r.cn
紫苏是什么植物hcv8jop9ns7r.cn 男人吃叶酸片有什么好处hcv9jop1ns5r.cn 早上起床吐痰带血是什么原因bjcbxg.com 鹿茸是什么hcv8jop8ns3r.cn 挂匾是什么意思onlinewuye.com
百度